College: S. S. College, Jehanabad

Department: Zoology

Class: M.Sc. Semester III

Subject: Zoology / Assignment

Topic: Genetics & Cell Biology (Paper – 3)

Teacher: Praveen Deepak

Last date of assignment submission: 19.05.2020

Mode of submission: E-mail or WhatsApp or Google Classroom

E-mail: <u>deepakprav@gmail.com</u>

WhatsApp No.: +91 75360 68068

Note: Students must submit their detail viz. Name, Class, and College Roll Number during the course of assignment submission. Students can access by going to link <u>https://classroom.google.com/c/MTAzMzA0NzcwMTg3/p/MTA0MDY5MjM00Dgy/deta</u> <u>ils</u> or joining Google Classroom with code <u>nmbvoje</u>.

To join Department's group, students can use following link https://chat.whatsapp.com/EHuHNfQzoAzJBMFNJvsjQx or scan QR Code

	4	A	Name:		Class:								
			Class Roll No.:		Total Marks: 40								
2 R	व्यते ज्ञान	ज्योतिसा जगत	Assignment: May 18, 20	20	Submission: May 19, 2020								
S.S.C (NAA)	C Accred	E, JEHANABAD ited- Grade 'B')	M.Sc. Zoology Semester III Paper 3 - Assignment										
Department of Zoology (Internal Assessment)			This assignment is for evaluation of students with respect to online classes and e-contents. It has a total of 40 questions and a total of 40 marks. Each question carries 1 mark. There is no minus marking.										
1.	Who	is known as t	he Father of Genetics?										
(A	Erich Tschem	ark	B	Carl Correns								
((C)	Gregor Johan	n Mendel	(\mathbf{D})	Hugo de Vries								
2.	Menc	lel discovered	I factors which remain its	identi	y in a hybrid, these factors are								
(A	Genes		B	Alleles								
(C	DNA		D	Chromosomes								
3.	Whic	h of the follow	wing specimen was chose	n by IV	lendel for his experiment?								
(A	Drosophila m	elanogaster	B	Musca domestica								
(C	Rattus rattus		D	Pisum sativum								
4.	Mark	the incorrect	statement about Pisum so	ativum	?								
(A	Long life cyc	e	B	Easy hybridization								
(C	Bisexual flow	ver	D	Well-defined discrete characters								
5.	What	is an allele?											
(A	Characteristi	cs of an organism	B	Alternate forms of genes								
(C	Homologous	chromosomes	D	Pair of centrioles								
6.	Out o	f the followir	ng, which law is also know	n as tł	ne law of purity of gametes?								
(A	Law of co-do	minance	B	Law of independent assortment								
(C	Law of segre	gation	D	Law of dominance								
7.	ame t	the cross by v	which law of independent	assort	ment inferred.								
(A	Dihybrid cros	S	B	Monohybrid cross								
(C	Test cross		\bigcirc	Back cross								

М.9	Sc. Zo	ology Semester III Paper 3- Assignme	Monday, May 18, 2020								
8.	Whi	ch of the following is an example of inco	mplet	e dominance?							
	\bigcirc	AB blood group	Mirabilis jalapa								
	\bigcirc	Shape of crown in poultry	D	Mouse coat color							
9.	In M	Mendel Dihybrid cross, the phenotypic ratio of F2 for a single character is									
	(\mathbf{A})	9:3:2:1	B	9:3:2:2							
	C	3:1	D	9:3:3:1							
10.	The fema	ne geometrical device that helps to find out all the possible combinations of male and male gametes is called									
	\bigcirc	Punnete square	B	Bateson square							
	\bigcirc	Mendel square	\bigcirc	Morgan square							
11.	The calle	Phenomenon of two or more than two ge	enes a	ffecting the expression of each other is							
	\bigcirc	crossing over	B	pairing							
	\bigcirc	gene interaction	\bigcirc	linkage							
12.	Whi	ch of the following ratio shows complem	entar	y gene interaction?							
	(\mathbf{A})	9:7	B	15:1							
	\bigcirc	1:2:1	D	9:3:3:1							
13.	Wha	t is epistasis?									
	(\mathbf{A})	Type of linkage	B	Masking or modifying gene effect							
	\bigcirc	Upper portion of a chromosome	D	Group of genes							
14.	Nam	e the phenomenon where two genes ha	ve the	same expression of the character?							
	(\mathbf{A})	Pleiotropy	B	Phenocopy							
	\bigcirc	Penetrance	D	Expressivity							
15.	The	sex influenced traits are present in									
	\bigcirc	autosome	В	sex chromosome							
	\bigcirc	mitochondrial chromosome	\bigcirc	None of the above							

	is fal	false?									
	A	Only male having a homozygous recessive form of this gene will not express it	B	No female will express the gene							
	C	The gene is autosomal	D	Heterozygous female will not express this gene							
17.	If pre influe	esent of horn in a breed of sheep is due enced and more expressed in male, cho	presence of h+ allele which is sex e off one out.								
	\bigcirc	Female with h ⁺ h ⁺	B	Male with h ⁺ h ⁺							
	(C)	Female with h h ⁺		Male with h h+							
18.	Patte allele betw	erned baldness is a sex influenced trait r e making non-bald phenotype and b is m reen a bald mother and normal father, w	more e nutant hat is	expressed in a male. If b+ is normal leading to bald phenotype, for a cross the probability of a bald son?							
	(\mathbf{A})	0	B	1⁄4							
	(C)	1/2	D	1							
19.	Choo	se the odd one out on the basis of sex i	nfluer	nce.							
	\bigcirc	Cleft palate	B	Club foot							
	(C)	Gout	D	Osteoporosis							
20.	Whic	h one of the following will not be expre	ssed i	n female even in homozygous form?							
	\bigcirc	Cock feathering	B	Cleft palate							
	(C)	Osteoporosis	D	Color blindness							
21.	How	will you recognize a terminal deletion fr	rom br	eakage and loss at the terminal end?							
	A	Indistinguishable	B	Terminal break will lead to shorter chromosome than that due to chunk deletion							
	C	Terminal break will be sticky	D	Deletion will be recognized by trans factors							

16. If A is a sex influenced trait that is more expressed in males, then which of the following

M.Sc. Zoology Semester III Paper 3- Assignment

М.	Sc. Zo	ology Semester III Paper 3- Assignme	Monday, May 18, 2020					
22.	Wha	t will be the effect of the deletion muta	tion of	a gene at the telomere?				
	A	Organism will die	В	Organism will develop serious hazards due to absence of the gene and its product				
	(C)	Mild effect on the phenotype	D	No effect				
23.	You Wha	hybridize two cells one of which carries t will you expect to observe?	a dele	tion mutation on chromosome.				
	\bigcirc	Buckling of chromatin of 1 st cell	B	Buckling of chromatin of 2 nd cell				
	C	Twisting and loop formation between the two chromatins	D	No observable difference				
24.	The calle	appearance of a recessive phenotype dued	ue to d	leletion of dominant gene is				
	\bigcirc	hemi-dominance	B	pseudo-dominance				
	(C)	imperfect dominance	D	co-dominance				
25.	Yello	ow colour of mouse is generated by		_mutation.				
	A	duplication	B	deletion				
	(C)	inversion	translocation					
26.	Mitc	chondrial disease are received from		-				
	\bigcirc	mother	B	father				
	\bigcirc	in laws	D	environment				
27.	The	transmission of genes that occur outsid	e the r	nucleus is called				
	\bigcirc	extranuclear inheritance	В	cytoplasmic inheritance				
	\bigcirc	both (a) & (b)	D	None of these				
28.	Extra	anuclear inheritance commonly occur in						
	\bigcirc	nucleus	В	cytoplasmic organelles				
	(C)	ribosomes	D	cell membrane				

M.S	M.Sc. Zoology Semester III Paper 3- Assignment Monday, May 18, 20												
29.	The	organelles involved in protein transport											
	$\textcircled{\textbf{A}}$	ER and Golgi	В	ER and mitochondria									
	\bigcirc	Golgi and mitochondria	D	lysosomes and Golgi									
30.	All h	ormones can cross plasma membrane e	xcept										
	(\mathbf{A})	estrogen	B	insulin									
	\bigcirc	progesterone	thyroxine										
31.	The mem	major biomolecule responsible of select	ive up	take of materials across plasma									
	\bigcirc	carbohydrate	В	protein									
	\bigcirc	lipids	D	phopholipids									
32.	The	coated pits are coated on their cytosolic	side v	with a lattice of									
	(\mathbf{A})	clathrin	B	lipoprotein									
	(C)	gycoprotein	D	transferrin									
33.	How	many amino acid residues are there in	ubiqui	tin?									
	\bigcirc	72	В	73									
	\bigcirc	75	D	76									
34.	The	two sub-assemblies of 26S proteasome	are										
	A	20S core particle and 19S regulatory particle	В	20S regulatory particle and 19S core particle									
	(C)	18S core particle and 19S regulatory particle	D	20S core particle and 18S regulatory particle									
35.	Prote	eins tagged with mannose 6-phosphate	are tra	ansported to									
	\bigcirc	Golgi complex	B	mitochondria									
	()	lysosome	\bigcirc	nucleus									

M.Sc. Zoology Semester III Paper 3- Assignment

36. Signal sequences are

(B) short peptide sequences that serves glycoproteins that serve as an as an address for transporting newly address for transporting newly synthesized proteins to the correct synthesized protein to the correct location location hort peptide sequences to transport a (D) short peptide sequences attached to protein to the nucleus a protein that initiates its degradation by digestive enzymes 37. The correct order of transport of protein in a secretory pathway is (B) (A) protein synthesized in the cytoplasm protein synthesized in the cytoplasm \rightarrow SER lumen \rightarrow RER lumen \rightarrow cis \rightarrow RER lumen \rightarrow cis Golgi \rightarrow median $Golgi \rightarrow median Golgi \rightarrow trans Golgi$ $Golgi \rightarrow trans Golg \rightarrow vesicles \rightarrow$ \rightarrow vesicles \rightarrow fusion of vesicles with fusion of vesicles with plasma plasma membrane \rightarrow exocytosis membrane \rightarrow exocytosis (C) (D) protein synthesized in the cytoplasm protein synthesized in the cytoplasm \rightarrow vesicles \rightarrow SER lumen \rightarrow RER \rightarrow RER lumen \rightarrow trans Golgi \rightarrow lumen \rightarrow cis Golgi \rightarrow median Golgi \rightarrow median Golgi \rightarrow cis Golgi \rightarrow vesicles trans Golgi \rightarrow fusion of vesicles with \rightarrow fusion of vesicles with plasma plasma membrane \rightarrow exocytosis membrane \rightarrow exocytosis 38. Nuclear localization signal is rich in B А tryptophan and histidine serine and threonine D С glutamine and asparagine lysine and arginine 39. Secretory proteins are synthesized by (в) ribosomes on nuclear membrane ribosomes on endoplasmic reticulum D free ribosomes None of these 40. The retention signal of proteins of endoplasmic reticulum consists of amino acids Gly—Asp-Glu-Leu at the N - terminus (**B** LyS—Asp-Glu-Leu at the N - terminus

(D)

LyS—Asp-Glu-Leu at the C - terminus

Gly—Asp-Glu-Leu at the C - terminus

Nam	ne:							Class	:									4		
Millionaay, May 18, 2020 M.Sc. Zoology Semester III Paper 3 - Answer Sheet												र्र		$\underline{\mathbb{A}}$						
This	This assignment is for evaluation of students with respect to online (NAAC Accredited- Grade 'B')																			
cias: 40 n	ses a nark	na e s. Ea	-con ch qu	tents Jesti	s. It ni on ca	as c rrie	s 1 n	ai of nark.	40 q . The	uest re is	no n	ana a ninus i	totai mark	of ing.		Dep (In	artm ternal	ent of Asses	Zoolo sment)	ba à
1	1.	A	B	C	D		1	19.	A	B	C	D	_	_ L	37.	A	В	C	D	
1	2.	(\mathbf{A})	B	(C)	D		_ 1	20.	(A)	B	C	D	1	- L	38.	A	B	C	D	
1	3.	(A)	B	(C)	D		<u> </u>	21.	A	B	C	D	-	- L	39.	A	B	(C)	D	
1	4.	A	B	(C)	D		1	22.	A	B	C	D	-	- L	40.	A	B	(C)	D	
1	5.	A	B	(C)	D		1	23.	A	B	C	D								
1	6.	A	B	C	D		1	24.	(A)	B	C	D								
1	7.	A	B	(C)	D		1	25.	A	B	C	D								
1	8.	(A)	B	(C)	D		1	26.	A	B	C	D								
1	9.	A	B	C	D		1	27.	A	B	C	D								
1	10.	A	B	(C)	D		1	28.	A	B	C	D								
1	11.	A	B	(C)	D		1	29.	A	B	C	D								
1	12.	A	B	C	D		1	30.	(\mathbf{A})	B	C	D								
1	13.	(\mathbf{A})	B	(C)	D		1	31.	(\mathbf{A})	B	C	D								
<u> </u>	14.	A	B	(C)	D		<u> </u>	32.	A	B	C	D								
1	15.	A	B	(C)	D		1	33.	A	B	C	D								
<u> </u>	16.	A	B	C	D		<u> </u>	34.	(A)	B	C	D								
<u> </u>	17.	A	B	C	D		_ 1	35.	(A)	B	C	D								
1	18.	A	B	C	D		1	36.	A	B	C	D								

M.Sc. Zoology Semester III - Paper 3 Name of the faculty member: Praveen Deepak, Assistant Professor of Zoology

page 1